
High Performance Computing 1

Dichotomy of Parallel Computing Platforms

Chapter 3

High Performance Computing 2

Flynn’s Classical Taxonomy

• Flynn's taxonomy (since 1966) distinguishes multi-processor
computer architectures according to how they can be
classified along the two independent dimensions of
Instruction and Data

Slide source: LLNL

High Performance Computing 3

Single Instruction, Single Data (SISD)

• A serial (non-parallel) computer
– Single instruction: only one instruction stream

is being acted on by the CPU during any one
clock cycle

– Single data: only one data stream is being
used as input during any one clock cycle

• Deterministic execution
– This is the oldest and until recently, the most

prevalent form of computer
– Examples: most PCs, single CPU

workstations and mainframes

Slide source: LLNL

High Performance Computing 4

Single Instruction, Multiple Data (SIMD)

• A type of parallel computer
– Single instruction: All

processing units execute the
same instruction at any given
clock cycle

– Multiple data: Each processing
unit can operate on a different
data element

• This type of machine typically
has an instruction dispatcher,
a very high-bandwidth
internal network, and a very
large array of very small-
capacity instruction units

– Synchronous (lockstep) and
deterministic execution

Slide source: LLNL

High Performance Computing 5

Multiple Instruction, Single Data (MISD)

• Few actual examples of this class of parallel computer have
ever existed

• Some conceivable examples might be:
– Multiple frequency filters operating on a single signal stream
– Multiple cryptography algorithms attempting to crack a single coded

message

Slide source: LLNL

High Performance Computing 6

Multiple Instruction, Multiple Data (MIMD)

• Currently, the most common type of
parallel computer
– Multiple Instruction: every processor may be

executing a different instruction stream
– Multiple Data: every processor may be

working with a different data stream
• A variant: single program multiple data

(SPMD)
• Execution can be synchronous or

asynchronous, deterministic or non-
deterministic
– Examples: most current supercomputers,

networked parallel computer "grids" and
multi-processor SMP computers - including
some types of PCs

Slide source: LLNL

High Performance Computing 7

SIMD vs. MIMD

• Require less hardware (only
one global control unit and one
copy of the program)

• Specialized hardware
architectures and application
characteristics

• Support irregular problems
poorly

• Poor resource utilization in the
case of conditional execution

• Store the program and operating
system at each processor

• Can be built from inexpensive off-
the-shelf components

• Support irregular problems well
• With relatively little effort in a

short amount of time

High Performance Computing 8

Dichotomy of Parallel Computing Platforms

• Based on the logical and physical organization of parallel
platforms

• Logical Organization (from a programmer’s perspective):
– Control structure: Ways of expressing parallel tasks
– Communication model: Mechanisms for specifying interaction between

tasks
• Physical Organization (actual hardware organization)

– Architecture
– Interconnection networks

High Performance Computing 9

Control Structure of Parallel Platforms

• Parallel tasks can be specified at various levels of granularity
– One extreme: a set of programs
– The other extreme: individual instructions within a program
– A range of models between them

• Example:
Adding two vectors:
1. for (i = 0; i< 1000; i++)
2. c[i] = a[i] + b[i]

All iterations of the loop are independent of each other

High Performance Computing 10

Communication Model: Shared-Address-Space
Platforms

• Support a common data space that is accessible to all
processors

• If supporting SPMD programming => multiprocessors
• Memory:

– Local (exclusive to a processor)
– Global (common to all processors)

• Two types of architectures:
– Uniform memory access (UMA): the time taken by a processor to

access any memory word in the system is identical
– Non-uniform memory access (NUMA): the time taken to access

certain memory words is longer than others
• NUMA and UMA are defined in terms of memory access

times, not cache access times

High Performance Computing 11

Typical Shared-address-space Architectures

UMA without caches UMA with caches NUMA

Typical shared-address-space architectures: (a) Uniform-memory access shared-
address-space computer; (b) Uniform-memory-access shared-address-space computer

with caches and memories; (c) Non-uniform-memory-access shared-address-space
computer with local memory only.

High Performance Computing 12

NUMA and UMA
Shared-Address-Space Platforms
• The distinction between NUMA and UMA platforms is important

from the point of view of algorithm design
– NUMA machines require locality from underlying algorithms for

performance
• Programming these platforms is easier since reads and writes

are implicitly visible to other processors
– However, read-write data to shared data must be coordinated (we have

discussed this in greater detail when we talk about threads
programming)

• Caches in such machines require coordinated access to
multiple copies
– This leads to the cache coherence problem

• A weaker model of these machines provides an address map,
but not coordinated access
– These models are called non cache coherent shared address space

machines

High Performance Computing 13

Global Memory Space

• Ease programming
• Read-only interactions:

– Invisible to programmers
– Same as in serial programs
– Reduce the burden on programmers

• Read/write interactions:
– Mutual exclusion for concurrent accesses
– Such as locks and related mechanisms

• Programming paradigms:
– Threads (POSIX, NT)
– Directives (OpenMP)

High Performance Computing 14

Caches in Shared-address-space

• Two major tasks:
– Address translation mechanism to locate a memory word in the system
– Well-defined semantics over multiple copies (cache coherence)

• Hardware support
• Software support (handled by programmers directly, get and put …)
• Updated vs. invalidated

High Performance Computing 15

Shared-Address-Space vs. Shared Memory Machines

• It is important to note the difference between the terms shared
address space and shared memory

• We refer to the former as a programming abstraction and to the
latter as a physical machine attribute

• It is possible to provide a shared address space using a
physically distributed memory

High Performance Computing 16

Logical View vs. Physical Organization

• Logical view:
– shared-address-space
– non-shared-address-space

• Physical organization:
– Shared-memory computers == UMA
– Distributed-memory computers

• If shared-address-space => NUMA

High Performance Computing 17

Message-Passing Platforms

• Logical machine view: consisting of p processing nodes, each
with its own exclusive address space
– Example: clustered workstations, non-shared-address-space

multicomputers; IBM SP, SGI Origin 2000
• Message passing: interactions, synchronization, and data &

work transfer
– Programming paradigm: send and receive
– APIs: Message Passing Interface (MPI) and Parallel Virtual Machine

(PVM)

High Performance Computing 18

Shared Memory vs. Distributed Memory

Slide source: LLNL

High Performance Computing 19

DSM/SVM

• Distributed Shared Memory (DSM) or Shared Virtual Memory
(SVM)

• Page-Based Access Control
– Leverage the virtual memory support
– Manage main memory as a fully associative cache on the virtual

address space
– Embed a coherence protocol in the page fault handler

• Object-Based Access Control
– Flexible
– No false sharing

High Performance Computing 20

Generations of Software DSM

• Three generations of software DSM:

1. Sequential consistency model in single CPU workstation
clusters, such as Ivy

2. Relaxed consistency model in single CPU workstation
clusters, such as TreadMarks

3. Relaxed consistency model and multi-threading on a network
of multiprocessor computers, such as Brazos and Strings

High Performance Computing 21

Parallel Algorithm Design

High Performance Computing 22

Steps in Parallel Algorithm Design

• Identifying portions of the work that can be performed
concurrently

• Mapping the concurrent pieces of work onto multiple
processes running in parallel

• Distributing the input, output, and intermediate data
associated with the program

• Managing accesses to data shared by multiple processors
• Synchronizing the processors at various stages of the

parallel program execution

Note:
– Performance benefit vs. Computational and storage resources
– Different choices on different parallel architectures or under different

parallel programming paradigms (rely on programmers, not
compilers)

High Performance Computing 23

Decomposition

• Decomposition: dividing a computation into smaller parts, some
or all of which may be executed in parallel

• Tasks: programmer-defined units (arbitrary size, indivisible)
• Reducing execution time: simultaneous execution of multiple

tasks

• Ideal decomposition:
– All tasks have similar sizes
– Tasks are NOT waiting for each other; NOT sharing resources

High Performance Computing 24

Dense Matrix-Vector Multiplication

• The ith element y[i] of the product vector is the dot-product
of the ith row of A with the input vector b

• A task: the computation of each y[i]
• All tasks are independent (performed all together or in any

sequence)

High Performance Computing 25

Dependency Graphs

• Task-dependency graph: an abstraction to express
dependencies among tasks and their relative order of
execution
– Directed acyclic graphs (DAG)

• Can be disconnected
– Nodes: tasks
– Directed edges: dependencies amongst tasks

• Edge set could be empty
• Rule: The task corresponding to a node can be executed

only when all tasks connected to this node by incoming
edges have completed

• Different decomposition methods might generate different
tasks and their dependency graphs
– The fewer directed edges, the better (detect parallelism)

High Performance Computing 26

Database Query Processing

Query: MODEL = “Civic” AND YEAR=“2001” AND (COLOR=“Green” OR COLOR=“White”)

High Performance Computing 27

Database Query Processing (cont’d)

Query: MODEL = “Civic” AND YEAR=“2001” AND (COLOR=“Green” OR COLOR=“White”)

High Performance Computing 28

Database Query Processing (cont’d)

Different ways of arranging computations can lead to different task-dependency graphs
with different characteristics

High Performance Computing 29

Granularity

• Granularity of the decomposition: the number and size of tasks
into which a problem is decomposed

• Fine-grained: a decomposition into a large number of small
tasks
– Exploit parallelism thoroughly

• Coarse-grained: a decomposition into a small number of large
tasks

High Performance Computing 30

Decomposition of Dense Matrix-Vector into
Four Tasks

A coarse-grained decomposition: four tasks, where each task computes
n/4 of the entries of the output vector of length n

High Performance Computing 31

Concurrency

• Maximum degree of concurrency: the maximum number of tasks
that can be executed simultaneously in a parallel program at any
given time
– Equal to or less than the total number of tasks due to dependencies

among the tasks
– For database query example: 4
– If task-dependency graphs are trees: equal to the number of leaves

• Average degree of concurrency: the average number of tasks
that can be run concurrently over the entire duration of
execution of the program

• Both maximum and average degree of concurrency:
– Usually increase as the granularity of tasks becomes smaller (finer)
– Depend on the shape of the task-dependency graph
– Same granularity does NOT guarantee the same degree

High Performance Computing 32

Critical Path

• Determines the average degree of concurrency
• Nodes:

– Start nodes: no incoming edges
– Finish nodes: no outgoing edges

• Critical path: the longest directed path between any pair of
start and finish nodes

• Critical path length: the sum of the weights of nodes along
the critical path

• Average degree of concurrency:
(the total amount of work) / (the critical path length)

• A shorter critical path favors a higher degree of concurrency

High Performance Computing 33

Average Degree of Concurrency
• The shape of the task-dependency graphs can change the

degrees of concurrency even if graphs are in the same
granularity

Total work = 63
Critical path length = 27
Max. Deg. Conc. = 4
Ave. Deg. Conc. = 63/27 = 2.33

Total work = 64
Critical path length = 34
Max. Deg. Conc. = 4
Ave. Deg. Conc. = 64/34 = 1.88

High Performance Computing 34

Limited Granularity

• It may appear: increasing the granularity of decomposition
and utilizing the resulting concurrency

 => perform more tasks in parallel
• There is an inherent bound on how fine-grained a

decomposition a problem permits
• Example:

– n2 multiplications and additions in matrix-vector multiplication
– The problem cannot be decomposed into more than O(n2) tasks

High Performance Computing 35

Restrictions on Speedup

• Speedup: ratio of serial to parallel execution time
• Restrictions on obtaining unbounded speedup from

parallelization:
– Limited granularity
– Degree of concurrency
– Interaction among tasks running on different physical processors

High Performance Computing 36

Sparse Matrix-Vector Multiplication

• Compute the product y = Ab of a sparse n x n matrix A with a
dense n x 1 vector b

• Can be optimized significantly by avoiding computations involving
the zeros

• Task i :
– Computes y[i]
– Owns row A[i, *] and b[i]
– Requires access to many elements of b owned by other tasks

High Performance Computing 37

Processes

• Process (computing agent that performs tasks) : an abstract
entity that uses the code and data of a task to produce the
output of the task within a finite amount of time

• A process: Not the rigorous operating system definition of a
process

• Synchronize and communicate with other processes
• For speedup: having several processes active simultaneously

High Performance Computing 38

Mapping

• Mapping: the mechanism by which tasks are assigned to
processes for execution

• The task-dependency and task-interaction graphs play an
important role

• Good mapping:
– Maximize the use of concurrency (mapping independent tasks onto

different processes)
– Minimize the total completion time (Executing tasks on critical path as

they’re executable)
– Minimize interaction (mapping tasks with a high degree of mutual

interaction onto the same process)
• Conflicting goals => finding a balance (the key)
• Decomposition vs. Mapping

Detects concurrency Determines how much and how efficiently to
 utilize the concurrency

High Performance Computing 39

An Example of Mapping

It makes more sense to map the tasks connected by an edge onto
the same process to prevent an inter-task interaction from becoming
an inter-processes interaction

High Performance Computing 40

Decomposition Techniques

• Fundamental steps: split the computations to be performed
into a set of tasks for concurrent execution (decomposition)

• Classification:
– Recursive decomposition (general purpose)
– Data decomposition (general purpose)
– Exploratory decomposition (special purpose)
– Speculative decomposition (special purpose)

High Performance Computing 41

Recursive Decomposition

• A method for inducing concurrency in problems that can be
solved using the divide-and-conquer strategy:
– Divide a problem into a set of independent subproblems
– Each subproblem is solved by recursively applying a similar division

into smaller subproblems
– Combine the results of the smaller subproblems

• Example: Quicksort
– A sequence A of n elements
– Select a pivot element x
– Partition A into A0 (smaller) and A1 (equal to x or greater than x)
– A0 and A1 are sorted by calling Quicksort recursively
– The recursion terminates when each subsequence contains only a

single element

High Performance Computing 42

Quicksort Example

A task: the work of partitioning a given subsequence

High Performance Computing 43

Data Decomposition

• A method for deriving concurrency in algorithms that operate on
large data structures
– Partition the data (input, output, both input and output, intermediate)
– Partition the computations into tasks based on the data partitioning

• The operations performed by these tasks on different data
partitions:
– Usually similar (matrix multiplication)
– Chosen from a small set of operations (LU factorization)

High Performance Computing 44

Partitioning Output Data

• Each element of the output can be computed independently of
others as a function of the input

• Each task is assigned the work of computing a portion of the
output

• Example: Matrix Multiplication
– The matrix is viewed as composed of blocks
– Scalar arithmetic operations on the elements are replaced by the ones

on the blocks
– Block versions of matrix algorithms are used to aid decomposition

High Performance Computing 45

Partitioning Input Data

• Partitioning of output data: only if each output can be
naturally computed as a function of the input

• Partitioning of input data
– Induce concurrency
– Each task performs as much computation as possible using local data
– Solutions to tasks may not directly solve the original problem

• A follow-up computation is needed to combine the results
• Such as summation and sorting of a sequence

High Performance Computing 46

Partitioning Intermediate Data

• Algorithms are often structured as multi-stage computations
– The output of one stage is the input to the subsequent stage

• Higher concurrency: partitioning the input or the output data of
an intermediate stage of the algorithm
– Sometimes: restructuring of the original algorithm

• Example: Matrix Multiplication
– Eight tasks compute their respective product submatrices and store the

results in a 3-D matrix D
– Dk,i,j is the product of Ai,k and Bk,j

High Performance Computing 47

The Owner-Computes Rule

• The owner-computes rule: a decomposition based on
partitioning output or input data

• Each partition performs all the computations involving data
that it owns

• Variant meanings:
– Partitioning input data: a task performs all the computations that can

be done using these data
– Partitioning output data: a task computes all the data in the partition

assigned to it

High Performance Computing 48

Exploratory Decomposition

• Decompose problems whose underlying computations
correspond to a search of a space for solutions
– Partition the search space into smaller parts
– Search each one of them until solutions are found

• Example: The 15-puzzle problem
– 15 tiles numbered 1 through 15 in a 4 x 4 grid
– One blank tile
– Four possible moves: up, down, left, and right
– The initial and final configurations are specified
– The objective: determine any sequence or a shortest sequence of

moves

High Performance Computing 49

Exploratory vs. Data Decomposition

• Exploratory decomposition appears similar to data
decomposition
– The search space can be thought of as being the data partitioned

• Differences:
– Data decomposition: each task performs useful computations towards

the solution of the problem
– Exploratory decomposition: unfinished tasks can be terminated as

soon as an overall solution is found
• The work performed by the parallel formulation can be either smaller or

greater than that performed by the serial algorithm

High Performance Computing 50

Speculative Decomposition

• Used when a program may take one of many possible
computationally significant branches depending on the
output of preceding computations
– One task performs the computations whose output will be used in

deciding the next computation
– Other tasks can concurrently start the computations of the next

stage
• Similar to evaluating branches in a switch statement in C

– Evaluate multiple branches in parallel
– Correct branch will be used and other branches will be discarded

• The parallel run time is smaller than the serial run time by
the amount of time to evaluate the condition
– It is used to perform next stage’s computation
– At least some wasteful computation

• Only the most promising branch is taken up a task in parallel
– If different, roll back and take the correct one

High Performance Computing 51

Speculative vs. Exploratory Decomposition

• What is unknown
– In speculative one: the input at a branch leading to multiple parallel

tasks is unknown
– In exploratory one: the output of the multiple tasks originating at a

branch is unknown
• The amount of work

– In speculative one: performs more aggregate work than its serial
counterpart

– In exploratory one: perform more, less, or the same amount of
aggregate work depending on the location of the solution in the
search space

High Performance Computing 52

Designing a Parallel Algorithm

1. Identify the concurrency available in a problem and
decompose it into tasks (executed in parallel)

2. Design a parallel algorithm to assign (map) tasks onto the
available processes
• The nature of the tasks
• The interactions among tasks

High Performance Computing 53

Characteristics of Tasks

• Task generation
– Static: all the tasks are known before the algorithm starts execution

• Data decomposition: matrix-multiplication, LU factorization
• Recursive decomposition: finding the minimum of a list of numbers

– Dynamic: the actual tasks and the task-dependency graph are not
explicitly available a priori, although the high level rules or guidelines are
known

• Recursive decomposition: quicksort
– Tasks are generated dynamically
– The size and shape of the task tree are determined by the input array

– Either static or dynamic:
• Exploratory decomposition: 15-puzzle problem

– A preprocessing task expands the search tree in a breadth-first manner to
generate predefined number of configurations

– These configurations are mapped and run on processes in parallel, and
they can generate dynamic tasks later

High Performance Computing 54

Characteristics of Tasks (cont’d)

• Task sizes: the relative amount of time required to complete
the task
– Uniform: the tasks require roughly the same amount of time

• Matrix multiplication
– Non-uniform: the amount of time required by the tasks varies

significantly
• Quicksort

• Knowledge of task sizes: influences the choice of mapping
scheme
– Known: matrix multiplication
– Unknown: 15-puzzle problem (how many moves to lead to the

solution)
• Size of data associated with tasks: (location) determines if

excessive data-movement overhead will be incurred
– Small input: 15-puzzle
– Small output: computing the minimum of a sequence
– Same order of input/output: Quicksort

High Performance Computing 55

Characteristics of Inter-Task Interactions

• Different parallel algorithms => different tasks
 => different types of interactions
• The nature of interactions => programming paradigms and

mapping schemes
• Static versus Dynamic

– Static: the task-interaction graph and the stage of the computation
at which each interaction occurs are known

• Programmed easily in shared-address-space and message-passing
paradigms

• Matrix multiplication
– Dynamic: the timing of interactions or the set of tasks to interact with

cannot be determined prior to the execution
• Hard to synchronize senders and receivers in message-passing

– Additional synchronization or polling responsibility
• 15-puzzle problem

– The finished task can pick up an unexplored state from the queue of another
busy task and start exploring it

High Performance Computing 56

Characteristics of Inter-Task Interactions (cont’d)

• Regular versus Irregular
(spatial structure)
– Regular: an interaction pattern

has some structure that can be
exploited for efficient
implementation

• Image dithering (each pixel
weight: values of original one
and neighbors)

– Irregular: no such regular
pattern exists

• Harder to handle, particularly in
message-passing paradigm

• Sparse matrix-vector
multiplication (the access
pattern for the vector depends
on the structure of the sparse
matrix)

High Performance Computing 57

Characteristics of Inter-Task Interactions (cont’d)

• Read-only versus Read-Write
– Sharing of data among tasks => inter-task interaction
– Type of sharing => the choice of the mapping
– Read-only: tasks require only a read-access to the data shared among

many concurrent tasks
• Matrix multiplication

– Read-Write: read and write on some shared data
• 15-puzzle problem (an exhaustive search)
• Heuristic search: use a heuristic to provide a relative approximate

indication of each state from the solution (potential number of
moves)

– The number of tiles that are out of place
– Priority queue: shared data and tasks (read/write)

• Put the states resulting from an expansion into the queue
• Pick up the next most promising state for the next expansion

High Performance Computing 58

Characteristics of Inter-Task Interactions (cont’d)

• One-way versus Two-way
– Two-way: the data or work needed by a task or a subset of tasks is

explicitly supplied by another task or subset of tasks
• Predefined producers and consumers
• Read-write

– One-way: only one of a pair of communicating tasks initiates the
interaction and completes it without interrupting the other one

• Read-only, read-write
– Shared-address-space: supports both one-way and two-way

interactions equally easily
– Message-passing: does NOT support one-way interactions

• The source must explicitly send the data to the recipient
• Converting one-way to two-way interactions via program restructuring

– Static: known a priori => introducing matching interaction operations
– Dynamic: restructuring (polling, checking for pending requests after

regular intervals)

High Performance Computing 59

Mapping Techniques

High Performance Computing 60

Mapping Techniques for Load Balancing

• To achieve a small execution time => minimize overheads
• Overheads:

– Interaction: inter-process interaction
– Idling: some processes may spend being idle

• To satisfy the constraints imposed by the task-dependency graph
• Overheads => functions of mapping
• Good mapping:

– Reducing interaction time
– Reducing idle time

• Conflicting objectives
– Mapping tasks onto the same process => unbalanced workload

(against concurrency)
– Balance the load among processes => may cause heavy interactions

High Performance Computing 61

Mapping Techniques for Load Balancing (cont’d)

• Assigning a balanced aggregate load of tasks to each process
is necessary but not sufficient condition for reducing process
idling

• Poor synchronization can lead to idling
– One task waits to send or receive data from others

• A good mapping: balance both computations and interactions
at each stage

High Performance Computing 62

Static Mapping

• Mapping: determined by programming paradigm and the
characteristics of tasks and interactions

• Statically generated tasks: either static or dynamic
• Static mapping: distribute the tasks among processes prior

to the execution of the algorithm
• A good mapping:

– The knowledge of task sizes
– The size of data associated with tasks
– The characteristics of inter-task interactions
– Parallel programming paradigm

• Optimal mapping for non-uniform tasks: NP-complete
– Heuristics

High Performance Computing 63

Dynamic Mapping

• Distribute the work among processes during the execution
• If tasks are generated dynamically => mapped dynamically
• Unknown task sizes => dynamic mappings are more effective
• Large data associated with the computation

– Data-movement cost may outweigh other advantages => static
– May work well in shared-address-space paradigm (read-only)

• Physical data movement on NUMA and cc-UMA

High Performance Computing 64

Schemes for Static Mapping

• Static mapping is often used in conjunction with
– Data partitioning
– Task partitioning

• Static mapping is used for mapping certain problems that are
expressed naturally by a static task-dependency graph

High Performance Computing 65

Schemes for Dynamic Mapping

• Dynamic mapping: when a static mapping generates
imbalanced work distribution or the task-dependency graph
is dynamic

• Referred as dynamic load-balancing
• Classification:

– Centralized
– Distributed

High Performance Computing 66

Centralized Schemes

• All executable tasks are maintained
– In a common central data structure
– By a special process or a subset of processes

• Master: the special process
• Slaves: other processes that depend on the master to obtain work

• No work => the central data structure or the master process
• Easier to implement
• Limited scalability

– The common data structure and the master process become the
bottleneck

High Performance Computing 67

Distributed Schemes

• The set of executable tasks are distributed among processes
which exchange tasks at run time to balance work
– Each process can send work to or receive work from any other process
– Do not suffer from the bottleneck

• Critical parameters:
– How are the sending and receiving processes paired together?
– Is the work transfer initiated by the sender or the receiver?
– How much work is transferred in each exchange?

• Too little: frequent transfers (receiver)
• Too much: frequent transfers (sender)

– When is the work transfer performed?
• In receiver initiated load balancing:

– Out of work
– Too little work left and anticipated being out of work soon

High Performance Computing 68

Minimize Frequency of Interactions

• There is a relatively high startup cost associated with each
interaction on many architectures

• Restructure the algorithm such that shared data are accessed
and used in large pieces
– Amortize the startup cost over large accesses (not the volume)

• Increase the spatial locality of data access
– Ensure the proximity of consecutively accessed data locations
– On a shared-address-space architecture:
 a word => an entire cache line => fewer cache lines
– On a message-passing system:
 fewer messages => larger messages

• Example: sparse matrix-vector multiplication
– Collect all the nonlocal entries of the input vector that it requires
– Then perform an interaction-free multiplication
 (not trying to access a nonlocal element of the input vector when

required)

High Performance Computing 69

Minimizing Contention and Hot Spots

• Contention occurs when multiple tasks try to access the
same resources concurrently (interaction pattern)
– Multiple simultaneous transmissions of data over the same link
– Multiple simultaneous accesses to the same memory block
– Multiple processes sending messages to the same process

• Only one of the multiple operations can proceed at a time
(critical section & mutual exclusion)
– Others are queued and proceed sequentially

• Example: matrix multiplication (2-D distribution)

– All tasks that work on the same row (column) of C will accessing the
same block of A (B)

– The need to concurrently access these blocks of matrices A and B
will create contention on both NUMA shared-address-space and
message-passing parallel architectures

High Performance Computing 70

Minimizing Contention and Hot Sports (cont’d)

• Eliminate contention in matrix multiplication
– Modify the order in which the block multiplications are performed

– All the tasks P*,j that work on the same row of C will be accessing
block , which is different for each task

– All the tasks Pi,* that work on the same column of C will be
accessing block , which is also different for each task

• Centralized schemes for dynamic mapping are a frequent
source of contention => distributed mapping schemes

High Performance Computing 71

Overlapping Computations with Interactions

• When wait for shared data => do some useful computations
• Techniques:

– Initiate an interaction early enough to complete before it is needed
• Identify irrelevant computations
• Restructure programs to initiate the interaction at an earlier point
• Possible if

– The interaction pattern is spatially and temporally static
– Multiple tasks are ready for execution

• Reducing the granularity of tasks => increase overheads
– In dynamic mapping schemes, the process can anticipate that it is going

to run out of work and initiate a work transfer interaction in advance

High Performance Computing 72

Overlapping Computations with Interactions
(cont’d)

• Overlapping computations with interaction requires support
from the programming paradigm, the operating system, and
the hardware
– Disjoint address-space paradigm:

• Non-blocking message passing primitives
• Functions for sending and receiving messages return control to

the program before they have actually completed
• Hardware permits computation to proceed concurrently with

message transfers
– Share-address-space paradigm:

• Prefetching hardware: anticipate the memory addresses and
initiate the access in advance of when they are needed

• Compilers can detect the access pattern and place pseudo-
references to certain key memory locations

High Performance Computing 73

Replicating Data or Computations

• Multiple processes may require frequent read-only access to
shared data structure, such as a hash-table

• After replicating a copy of the shared data on each process,
all subsequent accesses are free of interaction overhead

• For different paradigms:
– Shared-address-space: cache
– Message-passing:

• Remote data accesses are more expensive or harder than local
accesses

– Replication reduces interaction overhead and significantly simplifies
the writing of the parallel program

High Performance Computing 74

Replicating Data or Computations (cont’d)

• Cost: data replication increases the memory requirements
– Linearly with the number of concurrent processes
– Limit the size of the problem that can be solved
 => only replicate small mount of data

• To share intermediate results
– In some situations, it may be more cost-effective to compute these

intermediate results than to get them from another process
• Interaction overhead can be traded for replicated computation

High Performance Computing 75

Using Optimized Collective Interaction Operations

• Collective operations: such as
– Broadcasting some data to all processes
– Adding up numbers, each belonging to a different process

• Categories:
– Used by the tasks to access data
– Used to perform some communication-intensive computations
– Used for synchronization

• Collective operations are highly optimized to minimize the
overheads due to data transfer as well as contention
– Available in library form from the vendors (MPI)

High Performance Computing 76

Overlapping Interactions with Other Interactions

• Overlapping interactions between multiple pairs of processes
can reduce the effective volume if communication

• Pipeline fashion (using naive broadcast algorithm) can
increase the amount of overlap
– Unlikely to be included in a collective communication library (Expensive

for a single broadcast operation)

High Performance Computing 77

Parallel Algorithm Models

High Performance Computing 78

Parallel Algorithm Models

• The way of structuring a parallel algorithm by
– Selecting a decomposition
– Selecting a mapping technique
– Applying the appropriate strategy to minimize interactions

High Performance Computing 79

The Data-Parallel Model

• The tasks are statically or semi-statically mapped onto
processes and each task performs similar operations on
different data
– Data parallelism: a result of identical operations on different data items
– Similar computations => uniform partitioning => load balance

• Programming paradigms:
– Message-passing: a better handle on locality
– Shared-address-space: ease the programming effort

• Minimize interaction overheads:
– Choose a locality preserving decomposition
– Overlap computation and interaction
– Use optimized collective interaction routines

• The degree of data parallelism increases with the size of the
problem => more processes to solve larger problem

• Example: matrix multiplication

High Performance Computing 80

The Task Graph Model

• The interrelationships among the tasks are utilized to
promote locality or to reduce interaction costs
– Task-dependency graph is explicitly used in mapping for task

parallelism
• Solved problems: tasks with large data

– Tasks are mapped statically to help optimize the cost of data
movement among tasks

• Interaction-reducing techniques:
– Reduce the volume and frequency of interaction by promoting

locality
– Asynchronous interaction methods for overlapping

• Example: quicksort, sparse matrix factorization, many
algorithms using divide-and-conquer decomposition

High Performance Computing 81

The Work Pool Model

• Characterized by a dynamic mapping of task onto processes for
load balancing
– No desired premapping
– Centralized or decentralized
– Work (task) pool: shared list, priority queue, hash table, or tree
– If the work is generated dynamically and a decentralized mapping is

used => termination detection
• In message-passing paradigm: this model is used when the

amount of data is relative small (compared to computation)
– Tasks can move around without much interaction overhead
– The granularity of tasks: tradeoff between load-imbalance and the

overhead for adding and extracting tasks
• Example: parallelization of loops by chunk scheduling

High Performance Computing 82

The Master-Slave Model

• One or more master processes generate work and allocate it
to worker processes
– Static: if the manager can estimate the size of the tasks
– Dynamic: for load balancing

• When time-consuming for the master to generate work
• Synchronization: each phase must finish before work in the

next phases can be generated
• Hierarchical or multi-level manager-worker model

– Workers can further subdivide the tasks
• The granularity of tasks

– Bottleneck: too small
– Criteria: the cost of doing work dominates the cost of transferring

work and cost of synchronization
• Asynchronous interaction: overlapping

High Performance Computing 83

The Pipeline or Producer-Consumer Model

• A stream of data is passed on through a succession of
processes, each of which performs some tasks

• Stream parallelism: simultaneous execution of different
programs on a data stream

• A pipeline is a chain of producers and consumers
– A linear chain
– A directed graph

• Task granularity:
– Too large: longer time to fill up the pipeline
– Too fine: more interaction overheads

• Interaction reduction technique: overlapping
• Example: LU factorization

High Performance Computing 84

Hybrid Models

• More than one model may be applied
– Multiple models are applied hierarchically
– Multiple models are applied sequentially to different phases of a

parallel algorithm
• Example: quicksort

High Performance Computing 85

Analytical Modeling of Parallel Programs

High Performance Computing 86

Performance Evaluation

• Evaluation in terms of execution time
– A sequential algorithm: a function of the size of its input
– A parallel algorithm:

• Input size
• The number of processing elements (PEs) used
• The relative computation and interprocess communication speeds

• A parallel system: the combination of
– An algorithm
– The parallel architecture on which it is implemented

• Intuitive performance measures:
– Wall-clock time: taken to solve a given problem on a given parallel

platform
• Cannot be extrapolated to other problem instances or larger machine

configurations
– Quantify the benefit of parallelism: how much faster the parallel

program runs with respect to the serial program
• A poorer serial algorithm might be more amenable to parallel

processing?

High Performance Computing 87

Sources of Overhead in Parallel Programs

• A typical execution includes:
– Essential computation

• Computation that would be performed by the serial program for solving the same
problem instance

– Interprocess communication
– Idling
– Excess computation

• Computation not performed by the serial formulation

High Performance Computing 88

Sources of Overhead in Parallel Programs (cont’d)

• Interprocess interaction: processing elements (PEs) interact
and communicate data (e.g., intermediate results)
– Usually the most significant source of parallel processing overhead

• Idling: processing elements become idle due to
– Load imbalance

• Dynamic task generation: hard/impossible to predict the size of the
subtasks

– The problem cannot be subdivided statically to maintain
uniform workload

• Some PEs are idle while others are working on the problem
– Synchronization

• PEs might synchronize at certain points
– PEs which are ready sooner will be idle until all the rest are

ready
– Presence of serial components in a program

• Only one PE is allowed to work on it
• All the other PEs must wait

High Performance Computing 89

Sources of Overhead in Parallel Programs (cont’d)

• Excess computation: the difference in computation performed
by the parallel program and the best serial program
– The fastest known sequential algorithm may be difficult or impossible to

parallelize
– A parallel algorithm is developed based on a poorer but easily

parallelizable sequential algorithm
– A parallel algorithm based on the best serial algorithm may still perform

more aggregate computation than the serial algorithm
• Example: FFT (Fast Fourier Transform)

– In the serial version, the results of certain computations can be
used

– In the parallel version, they are not reusable (generated by
different PEs)

• Be performed multiple times on different PEs

High Performance Computing 90

Performance Metrics for Parallel Systems

• Performance metrics are useful for:
– Determining the best algorithm
– Evaluating hardware platforms
– Examining the benefits from parallelism

• Execution time
– The serial runtime of a program (TS): the time elapsed between the

beginning and the end of its execution on a sequential computer
– The parallel runtime (TP): the time that elapses from the moment a

parallel computation starts to the moment the last PE finishes execution

High Performance Computing 91

Performance Metrics for Parallel Systems (cont’d)

• Overhead function: the overheads incurred by a parallel
program are encapsulated into a single expression

• Total overhead (To): the total time collectively spent by all the
PEs over and above that required by the fastest known
sequential algorithm for solving the same problem on a single
PE
– The total time summed over all PE is pTP
– Overhead To = pTP – TS

• Speedup (S): the ratio of the time taken to solve a problem on
a single PE to the time required to solve the same problem on
a parallel computer with p identical PEs
– Capture the relative benefit of solving a problem in parallel
– The p PEs are identical the one used by the sequential algorithm

High Performance Computing 92

Computing Speedups of Parallel Programs

• For a given problem, more than one sequential algorithm
may be available
– Natural to use the one that solves the problem in the least amount of

time
– The asymptotically fastest sequential algorithm is unknown or its

runtime has a large constant that makes it impractical to implement
• Take the fastest known algorithm

• Example: parallelizing bubble sort (105 records)
– The serial bubble sort: 150 seconds
– The serial quick sort: 30 seconds
– A parallel version of bubble sort (odd-even sort): 40 seconds
– Speedup

• Using serial bubble sort: 150/40 = 3.75
• Using serial quick sort: 30/40 = 0.75

High Performance Computing 93

Computing Speedups of Parallel Programs (cont’d)

• Theoretically, speedup can never exceed the number of PE, p
• To achieve speedup p:

– None of the PEs spends more than TS/p
• A speedup greater than p:

– Only if each PE spends less than time TS/p
• A single PE could emulate the p PEs and solve the problem in

fewer than TS units of time
– Contradiction: speedup is computed with respect to the best

sequential algorithm
– Superlinear speedup

• The work performed by a serial algorithm is greater than its
parallel formulation

• Hardware features that put the serial implementation at a
disadvantage

• Example: the data might be too large for the cache of a single PE
– Degrading performance due to the use of slower memory elements
– Partitioned data can be small enough to fit into respective PE’s

caches

High Performance Computing 94

Amdahl’s Law
• The overall performance improvement gained by optimizing a

single part of a system is limited by the fraction of time that
the improved part is actually used

• The theoretical speedup is always limited by the part of the
task that cannot benefit from the improvement
– Excess computation and communication are captured in the serial

component

High Performance Computing 95

Efficiency

• Only an ideal parallel system containing p PEs can deliver a
speedup equal to p
– In practice, not achievable

• PEs cannot devote 100% of their time to the computations of the algorithm

• Efficiency: a measure of the fraction of time for which a PE is
usefully employed
– The ratio of speedup to the number of PEs E = S / p
– In practice, speedup is less than p and efficiency is between 0 – 1

• Example: adding n numbers on n PEs

High Performance Computing 96

Cost

• Cost (work or processor-time product) : the product of
parallel runtime and the number of processing elements
used
– Reflect the sum of the time that each PE spends solving the

problem
• Efficiency: the ratio of the execution time of the fastest

known sequential algorithm for solving a problem to the
cost of solving the same problem on p PEs
– The cost of solving a problem on a single PE è time of the fastest

known sequential algorithm
• Cost-optimal: the cost on a parallel computer has the same

asymptotic growth as a function of the input size as the
fastest-known sequential algorithm on a PE
– For such systems, the efficiency should be (1)

• Known as pTP-optimal systems
– Example: adding n numbers on n PEs

• Total cost (processor-time product): (nlogn)
• Serial time: (n)
• Not cost-optimal

θ

θ

θ

High Performance Computing 97

Variation of Efficiency

• Two observations
– For a given problem size, as we increase p, the overall efficiency goes down

• Common to all parallel systems
– Keeping p constant, the efficiency increases if the problem size is increased

• To keep the efficiency fixed: the problem size increases at a rate with
respect to p

– A lower rate is more desirable (in problem size)

