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Dichotomy of Parallel Computing Platforms

Chapter 3
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Flynn’s Classical Taxonomy

• Flynn's taxonomy (since 1966) distinguishes multi-processor 
computer architectures according to how they can be 
classified along the two independent dimensions of 
Instruction and Data 

Slide source: LLNL
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Single Instruction, Single Data (SISD)

• A serial (non-parallel) computer 
– Single instruction: only one instruction stream 

is being acted on by the CPU during any one 
clock cycle 

– Single data: only one data stream is being 
used as input during any one clock cycle 

• Deterministic execution 
– This is the oldest and until recently, the most 

prevalent form of computer 
– Examples: most PCs, single CPU 

workstations and mainframes 

Slide source: LLNL
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Single Instruction, Multiple Data (SIMD)

• A type of parallel computer 
– Single instruction: All 

processing units execute the 
same instruction at any given 
clock cycle 

– Multiple data: Each processing 
unit can operate on a different 
data element 

• This type of machine typically 
has an instruction dispatcher, 
a very high-bandwidth 
internal network, and a very 
large array of very small-
capacity instruction units

– Synchronous (lockstep) and 
deterministic execution 

Slide source: LLNL
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Multiple Instruction, Single Data (MISD)

• Few actual examples of this class of parallel computer have 
ever existed 

• Some conceivable examples might be: 
– Multiple frequency filters operating on a single signal stream 
– Multiple cryptography algorithms attempting to crack a single coded 

message

Slide source: LLNL
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Multiple Instruction, Multiple Data (MIMD)

• Currently, the most common type of 
parallel computer 
– Multiple Instruction: every processor may be 

executing a different instruction stream 
– Multiple Data: every processor may be 

working with a different data stream 
• A variant: single program multiple data 

(SPMD)
• Execution can be synchronous or 

asynchronous, deterministic or non- 
deterministic 
– Examples: most current supercomputers, 

networked parallel computer "grids" and 
multi-processor SMP computers - including 
some types of PCs

Slide source: LLNL
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SIMD  vs.  MIMD

• Require less hardware (only 
one global control unit and one 
copy of the program)

• Specialized hardware 
architectures and application 
characteristics

• Support irregular problems 
poorly

• Poor resource utilization in the 
case of conditional execution

• Store the program and operating 
system at each processor

• Can be built from inexpensive off-
the-shelf components 

• Support irregular problems well
• With relatively little effort in a 

short amount of time
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Dichotomy of Parallel Computing Platforms

• Based on the logical and physical organization of parallel 
platforms

• Logical Organization (from a programmer’s perspective):
– Control structure: Ways of expressing parallel tasks 
– Communication model: Mechanisms for specifying interaction between 

tasks 
• Physical Organization (actual hardware organization)

– Architecture
– Interconnection networks
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Control Structure of Parallel Platforms

• Parallel tasks can be specified at various levels of granularity
– One extreme: a set of programs
– The other extreme: individual instructions within a program
– A range of models between them

• Example:
Adding two vectors:
1. for (i = 0; i< 1000; i++)
2.         c[i] = a[i] + b[i]

All iterations of the loop are independent of each other
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Communication Model: Shared-Address-Space 
Platforms

• Support a common data space that is accessible to all 
processors

• If supporting SPMD programming => multiprocessors
• Memory:

– Local (exclusive to a processor)
– Global (common to all processors)

• Two types of architectures:
– Uniform memory access (UMA): the time taken by a processor to 

access any memory word in the system is identical
– Non-uniform memory access (NUMA): the time taken to access 

certain memory words is longer than others
• NUMA and UMA are defined in terms of memory access 

times, not cache access times
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Typical Shared-address-space Architectures

UMA without caches UMA with caches NUMA

Typical shared-address-space architectures: (a) Uniform-memory access shared-
address-space computer; (b) Uniform-memory-access shared-address-space computer 

with caches and memories; (c) Non-uniform-memory-access shared-address-space 
computer with local memory only.
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NUMA and UMA 
Shared-Address-Space Platforms 
• The distinction between NUMA and UMA platforms is important 

from the point of view of algorithm design
– NUMA machines require locality from underlying algorithms for 

performance
• Programming these platforms is easier since reads and writes 

are implicitly visible to other processors
– However, read-write data to shared data must be coordinated (we have 

discussed this in greater detail when we talk about threads 
programming)

• Caches in such machines require coordinated access to 
multiple copies
– This leads to the cache coherence problem

• A weaker model of these machines provides an address map, 
but not coordinated access
– These models are called non cache coherent shared address space 

machines
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Global Memory Space

• Ease programming
• Read-only interactions: 

– Invisible to programmers
– Same as in serial programs
– Reduce the burden on programmers

• Read/write interactions: 
– Mutual exclusion for concurrent accesses
– Such as locks and related mechanisms

• Programming paradigms:
– Threads (POSIX, NT)
– Directives (OpenMP)
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Caches in Shared-address-space

• Two major tasks:
– Address translation mechanism to locate a memory word in the system
– Well-defined semantics over multiple copies (cache coherence)

• Hardware support
• Software support (handled by programmers directly, get and put …)
• Updated vs. invalidated
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Shared-Address-Space  vs. Shared Memory Machines 

• It is important to note the difference between the terms shared 
address space and shared memory

• We refer to the former as a programming abstraction and to the 
latter as a physical machine attribute

• It is possible to provide a shared address space using a 
physically distributed memory
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Logical View vs. Physical Organization

• Logical view: 
– shared-address-space
– non-shared-address-space

• Physical organization:
– Shared-memory computers  == UMA
– Distributed-memory computers

• If shared-address-space => NUMA
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Message-Passing Platforms

• Logical machine view: consisting of p processing nodes, each 
with its own exclusive address space
– Example: clustered workstations, non-shared-address-space 

multicomputers; IBM SP, SGI Origin 2000
• Message passing:  interactions, synchronization, and data & 

work transfer
– Programming paradigm: send and receive
– APIs: Message Passing Interface (MPI) and Parallel Virtual Machine 

(PVM)
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Shared Memory vs. Distributed Memory

Slide source: LLNL
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DSM/SVM

• Distributed Shared Memory (DSM) or Shared Virtual Memory 
(SVM)

• Page-Based Access Control
– Leverage the virtual memory support
– Manage main memory as a fully associative cache on the virtual 

address space
– Embed a coherence protocol in the page fault handler

• Object-Based Access Control
– Flexible
– No false sharing
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Generations of Software DSM

• Three generations of software DSM:

1. Sequential consistency model in single CPU workstation 
clusters, such as Ivy

2. Relaxed consistency model in single CPU workstation 
clusters, such as TreadMarks

3. Relaxed consistency model and multi-threading on a network 
of multiprocessor computers, such as Brazos and Strings
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Parallel Algorithm Design
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Steps in Parallel Algorithm Design

• Identifying portions of the work that can be performed 
concurrently

• Mapping the concurrent pieces of work onto multiple 
processes running in parallel

• Distributing the input, output, and intermediate data 
associated with the program

• Managing accesses to data shared by multiple processors
• Synchronizing the processors at various stages of the 

parallel program execution

Note: 
– Performance benefit  vs.  Computational and storage resources
– Different choices on different parallel architectures or under different 

parallel programming paradigms (rely on programmers, not 
compilers)
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Decomposition

• Decomposition: dividing a computation into smaller parts, some 
or all of which may be executed in parallel

• Tasks: programmer-defined units (arbitrary size, indivisible)
• Reducing execution time: simultaneous execution of multiple 

tasks

• Ideal decomposition:
– All tasks have similar sizes
– Tasks are NOT waiting for each other; NOT sharing resources
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Dense Matrix-Vector Multiplication

• The ith element y[i] of the product vector is the dot-product 
of the ith row of A with the input vector b

• A task:  the computation of each y[i]
• All tasks are independent (performed all together or in any 

sequence)
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Dependency Graphs

• Task-dependency graph: an abstraction to express 
dependencies among tasks and their relative order of 
execution
– Directed acyclic graphs (DAG)

• Can be disconnected
– Nodes: tasks
– Directed edges: dependencies amongst tasks 

• Edge set could be empty
• Rule: The task corresponding to a node can be executed 

only when all tasks connected to this node by incoming 
edges have completed

• Different decomposition methods might generate different 
tasks and their dependency graphs
– The fewer directed edges, the better (detect parallelism)
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Database Query Processing

Query:  MODEL = “Civic” AND YEAR=“2001” AND (COLOR=“Green” OR COLOR=“White”)
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Database Query Processing (cont’d)

Query:  MODEL = “Civic” AND YEAR=“2001” AND (COLOR=“Green” OR COLOR=“White”)
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Database Query Processing (cont’d)

Different ways of arranging computations can lead to different task-dependency graphs 
with different characteristics



High Performance Computing 29

Granularity

• Granularity of the decomposition: the number and size of tasks 
into which a problem is decomposed

• Fine-grained: a decomposition into a large number of small 
tasks
– Exploit parallelism thoroughly

• Coarse-grained: a decomposition into a small number of large 
tasks
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Decomposition of Dense Matrix-Vector into 
Four Tasks

A coarse-grained decomposition: four tasks, where each task computes 
n/4 of the entries of the output vector of length n
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Concurrency

• Maximum degree of concurrency: the maximum number of tasks 
that can be executed simultaneously in a parallel program at any 
given time
– Equal to or less than the total number of tasks due to dependencies 

among the tasks
– For database query example:  4
– If task-dependency graphs are trees: equal to the number of leaves 

• Average degree of concurrency: the average number of tasks 
that can be run concurrently over the entire duration of 
execution of the program

• Both maximum and average degree of concurrency:
– Usually increase as the granularity of tasks becomes smaller (finer)
– Depend on the shape of the task-dependency graph
– Same granularity does NOT guarantee the same degree
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Critical Path

• Determines the average degree of concurrency
• Nodes:

– Start nodes: no incoming edges
– Finish nodes: no outgoing edges

• Critical path: the longest directed path between any pair of 
start and finish nodes

• Critical path length: the sum of the weights of nodes along 
the critical path

• Average degree of concurrency: 
(the total amount of work) / (the critical path length)

• A shorter critical path favors a higher degree of concurrency
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Average Degree of Concurrency
• The shape of the task-dependency graphs can change the 

degrees of concurrency even if graphs are in the same 
granularity

Total work = 63
Critical path length = 27
Max. Deg. Conc. = 4
Ave. Deg. Conc. = 63/27 = 2.33

Total work = 64
Critical path length = 34
Max. Deg. Conc. = 4
Ave. Deg. Conc. = 64/34 = 1.88
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Limited Granularity

• It may appear: increasing the granularity of decomposition 
and utilizing the resulting concurrency  

    => perform more tasks in parallel 
• There is an inherent bound on how fine-grained a 

decomposition a problem permits
• Example:

– n2 multiplications and additions in matrix-vector multiplication 
– The problem cannot be decomposed into more than O(n2) tasks
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Restrictions on Speedup

• Speedup: ratio of serial to parallel execution time
• Restrictions on obtaining unbounded speedup from 

parallelization:
– Limited granularity
– Degree of concurrency
– Interaction among tasks running on different physical processors



High Performance Computing 36

Sparse Matrix-Vector Multiplication

• Compute the product y = Ab of a sparse n x n matrix A with a 
dense n x 1 vector b

• Can be optimized significantly by avoiding computations involving 
the zeros

• Task i :
– Computes y[i]
– Owns row A[i, *] and b[i]
– Requires access to many elements of b owned by other tasks
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Processes

• Process (computing agent that performs tasks) : an abstract 
entity that uses the code and data of a task to produce the 
output of the task within a finite amount of time

• A process: Not the rigorous operating system definition of a 
process

• Synchronize and communicate with other processes
• For speedup: having several processes active simultaneously
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Mapping

• Mapping: the mechanism by which tasks are assigned to 
processes for execution 

• The task-dependency and task-interaction graphs play an 
important role

• Good mapping:
– Maximize the use of concurrency (mapping independent tasks onto 

different processes)
– Minimize the total completion time (Executing tasks on critical path as 

they’re executable)
– Minimize interaction (mapping tasks with a high degree of mutual 

interaction onto the same process)
• Conflicting goals => finding a balance (the key)
•       Decomposition      vs.     Mapping

Detects concurrency            Determines how much and how efficiently to
                                             utilize the concurrency
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An Example of Mapping

It makes more sense to map the tasks connected by an edge onto 
the same process to prevent an inter-task interaction from becoming
an inter-processes interaction
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Decomposition Techniques

• Fundamental steps: split the computations to be performed 
into a set of tasks for concurrent execution (decomposition)

• Classification:
– Recursive decomposition (general purpose)
– Data decomposition (general purpose)
– Exploratory decomposition (special purpose)
– Speculative decomposition (special purpose)
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Recursive Decomposition

• A method for inducing concurrency in problems that can be 
solved using the divide-and-conquer strategy:
– Divide a problem into a set of independent subproblems
– Each subproblem is solved by recursively applying a similar division 

into smaller subproblems 
– Combine the results of the smaller subproblems

• Example: Quicksort
– A sequence A of n elements
– Select a pivot element x
– Partition A into A0 (smaller) and A1 (equal to x or greater than x)
– A0 and A1 are sorted by calling Quicksort recursively
– The recursion terminates when each subsequence contains only a 

single element
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Quicksort Example

A task: the work of partitioning a given subsequence
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Data Decomposition

• A method for deriving concurrency in algorithms that operate on 
large data structures
– Partition the data (input, output, both input and output, intermediate)
– Partition the computations into tasks based on the data partitioning

• The operations performed by these tasks on different data 
partitions:
– Usually similar (matrix multiplication)
– Chosen from a small set of operations (LU factorization)
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Partitioning Output Data

• Each element of the output can be computed independently of 
others as a function of the input

• Each task is assigned the work of computing a portion of the 
output

• Example: Matrix Multiplication
– The matrix is viewed as composed of blocks
– Scalar arithmetic operations on the elements are replaced by the ones 

on the blocks
– Block versions of matrix algorithms are used to aid decomposition
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Partitioning Input Data

• Partitioning of output data: only if each output can be 
naturally computed as a function of the input

• Partitioning of input data
– Induce concurrency
– Each task performs as much computation as possible using local data
– Solutions to tasks may not directly solve the original problem

• A follow-up computation is needed to combine the results
• Such as summation and sorting of a sequence
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Partitioning Intermediate Data

• Algorithms are often structured as multi-stage computations 
– The output of one stage is the input to the subsequent stage

• Higher concurrency: partitioning the input or the output data of 
an intermediate stage of the algorithm
– Sometimes: restructuring of the original algorithm

• Example: Matrix Multiplication
– Eight tasks compute their respective product submatrices and store the 

results in a 3-D matrix D
– Dk,i,j is the product of Ai,k and Bk,j
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The Owner-Computes Rule

• The owner-computes rule: a decomposition based on 
partitioning output or input data

• Each partition performs all the computations involving data 
that it owns

• Variant meanings:
– Partitioning input data: a task performs all the computations that can 

be done using these data
– Partitioning output data: a task computes all the data in the partition 

assigned to it
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Exploratory Decomposition

• Decompose problems whose underlying computations 
correspond to a search of a space for solutions
– Partition the search space into smaller parts
– Search each one of them until solutions are found

• Example: The 15-puzzle problem
– 15 tiles numbered 1 through 15 in a 4 x 4 grid
– One blank tile
– Four possible moves: up, down, left, and right
– The initial and final configurations are specified
– The objective: determine any sequence or a shortest sequence of 

moves
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Exploratory vs. Data Decomposition

• Exploratory decomposition appears similar to data 
decomposition
– The search space can be thought of as being the data partitioned

• Differences:
– Data decomposition: each task performs useful computations towards 

the solution of the problem
– Exploratory decomposition: unfinished tasks can be terminated as 

soon as an overall solution is found
• The work performed by the parallel formulation can be either smaller or 

greater than that performed by the serial algorithm
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Speculative Decomposition

• Used when a program may take one of many possible 
computationally significant branches depending on the 
output of preceding computations
– One task performs the computations whose output will be used in 

deciding the next computation
– Other tasks can concurrently start the computations of the next 

stage
• Similar to evaluating branches in a switch statement in C

– Evaluate multiple branches in parallel
– Correct branch will be used and other branches will be discarded

• The parallel run time is smaller than the serial run time by 
the amount of time to evaluate the condition
– It is used to perform next stage’s computation
– At least some wasteful computation

• Only the most promising branch is taken up a task in parallel
– If different, roll back and take the correct one
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Speculative vs. Exploratory Decomposition

• What is unknown
– In speculative one: the input at a branch leading to multiple parallel 

tasks is unknown
– In exploratory one: the output of the multiple tasks originating at a 

branch is unknown
• The amount of work

– In speculative one: performs more aggregate work than its serial 
counterpart

– In exploratory one: perform more, less, or the same amount of 
aggregate work depending on the location of the solution in the 
search space
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Designing a Parallel Algorithm

1. Identify the concurrency available in a problem and 
decompose it into tasks (executed in parallel)

2. Design a parallel algorithm to assign (map) tasks onto the 
available processes
• The nature of the tasks
• The interactions among tasks
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Characteristics of Tasks

• Task generation
– Static: all the tasks are known before the algorithm starts execution

• Data decomposition: matrix-multiplication, LU factorization
• Recursive decomposition: finding the minimum of a list of numbers

– Dynamic: the actual tasks and the task-dependency graph are not 
explicitly available a priori, although the high level rules or guidelines are 
known

• Recursive decomposition: quicksort 
– Tasks are generated dynamically
– The size and shape of the task tree are determined by the input array

– Either static or dynamic: 
• Exploratory decomposition: 15-puzzle problem

– A preprocessing task expands the search tree in a breadth-first manner to 
generate predefined number of configurations

– These configurations are mapped and run on processes in parallel, and 
they can generate dynamic tasks later
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Characteristics of Tasks (cont’d)

• Task sizes: the relative amount of time required to complete 
the task
– Uniform: the tasks require roughly the same amount of time

• Matrix multiplication
– Non-uniform: the amount of time required by the tasks varies 

significantly
• Quicksort

• Knowledge of task sizes: influences the choice of mapping 
scheme
– Known: matrix multiplication
– Unknown: 15-puzzle problem (how many moves to lead to the 

solution)
• Size of data associated with tasks: (location) determines if 

excessive data-movement overhead will be incurred
– Small input: 15-puzzle
– Small output: computing the minimum of a sequence
– Same order of input/output: Quicksort
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Characteristics of Inter-Task Interactions

• Different parallel algorithms    =>  different tasks
    =>  different types of interactions
• The nature of interactions => programming paradigms and 

mapping schemes
• Static versus Dynamic

– Static: the task-interaction graph and the stage of the computation 
at which each interaction occurs are known

• Programmed easily in shared-address-space and message-passing 
paradigms

• Matrix multiplication
– Dynamic: the timing of interactions or the set of tasks to interact with 

cannot be determined prior to the execution
• Hard to synchronize senders and receivers in message-passing

– Additional synchronization or polling responsibility
• 15-puzzle problem

– The finished task can pick up an unexplored state from the queue of another 
busy task and start exploring it
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Characteristics of Inter-Task Interactions (cont’d)

• Regular versus Irregular  
(spatial structure)
– Regular: an interaction pattern 

has some structure that can be 
exploited for efficient 
implementation

• Image dithering (each pixel 
weight: values of original one 
and neighbors)

– Irregular: no such regular 
pattern exists

• Harder to handle, particularly in 
message-passing paradigm

• Sparse matrix-vector 
multiplication (the access 
pattern for the vector depends 
on the structure of the sparse 
matrix)
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Characteristics of Inter-Task Interactions (cont’d)

• Read-only versus Read-Write
– Sharing of data among tasks => inter-task interaction
– Type of sharing => the choice of the mapping
– Read-only:  tasks require only a read-access to the data shared among 

many concurrent tasks
• Matrix multiplication

– Read-Write: read and write on some shared data
• 15-puzzle problem (an exhaustive search)
• Heuristic search: use a heuristic to provide a relative approximate 

indication of each state from the solution (potential number of 
moves)

– The number of tiles that are out of place
– Priority queue: shared data and tasks (read/write)

• Put the states resulting from an expansion into the queue
• Pick up the next most promising state for the next expansion
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Characteristics of Inter-Task Interactions (cont’d)

• One-way versus Two-way
– Two-way: the data or work needed by a task or a subset of tasks is 

explicitly supplied by another task or subset of tasks
• Predefined producers and consumers 
• Read-write

– One-way: only one of a pair of communicating tasks initiates the 
interaction and completes it without interrupting the other one

• Read-only, read-write
– Shared-address-space: supports both one-way and two-way 

interactions equally easily
– Message-passing: does NOT support one-way interactions

• The source must explicitly send the data to the recipient
• Converting one-way to two-way interactions via program restructuring

– Static: known a priori => introducing matching interaction operations
– Dynamic: restructuring (polling, checking for pending requests after 

regular intervals)
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Mapping Techniques
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Mapping Techniques for Load Balancing

• To achieve a small execution time => minimize overheads
• Overheads:

– Interaction: inter-process interaction
– Idling: some processes may spend being idle

• To satisfy the constraints imposed by the task-dependency graph
• Overheads => functions of mapping
• Good mapping:

– Reducing interaction time
– Reducing idle time

• Conflicting objectives
– Mapping tasks onto the same process => unbalanced workload 

(against concurrency)
– Balance the load among processes => may cause heavy interactions
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Mapping Techniques for Load Balancing (cont’d)

• Assigning a balanced aggregate load of tasks to each process 
is necessary but not sufficient condition for reducing process 
idling

• Poor synchronization can lead to idling
– One task waits to send or receive data from others

• A good mapping: balance both computations and interactions 
at each stage
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Static Mapping

• Mapping: determined by programming paradigm and the 
characteristics of tasks and interactions

• Statically generated tasks: either static or dynamic
• Static mapping: distribute the tasks among processes prior 

to the execution of the algorithm
• A good mapping:

– The knowledge of task sizes
– The size of data associated with tasks
– The characteristics of inter-task interactions
– Parallel programming paradigm

• Optimal mapping for non-uniform tasks: NP-complete
– Heuristics 
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Dynamic Mapping

• Distribute the work among processes during the execution
• If tasks are generated dynamically => mapped dynamically
• Unknown task sizes => dynamic mappings are more effective
• Large data associated with the computation

– Data-movement cost may outweigh other advantages => static
– May work well in shared-address-space paradigm (read-only)

• Physical data movement on NUMA and cc-UMA
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Schemes for Static Mapping

• Static mapping is often used in conjunction with
– Data partitioning
– Task partitioning

• Static mapping is used for mapping certain problems that are 
expressed naturally by a static task-dependency graph
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Schemes for Dynamic Mapping

• Dynamic mapping: when a static mapping generates 
imbalanced work distribution or the task-dependency graph 
is dynamic

• Referred as dynamic load-balancing
• Classification:

– Centralized 
– Distributed
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Centralized Schemes

• All executable tasks are maintained 
– In a common central data structure 
– By a special process or a subset of processes

• Master: the special process
• Slaves: other processes that depend on the master to obtain work

• No work => the central data structure or the master process
• Easier to implement
• Limited scalability

– The common data structure and the master process become the 
bottleneck
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Distributed Schemes

• The set of executable tasks are distributed among processes 
which exchange tasks at run time to balance work
– Each process can send work to or receive work from any other process
– Do not suffer from the bottleneck

• Critical parameters:
– How are the sending and receiving processes paired together?
– Is the work transfer initiated by the sender or the receiver?
– How much work is transferred in each exchange?

• Too little: frequent transfers (receiver)
• Too much: frequent transfers (sender)

– When is the work transfer performed?
• In receiver initiated load balancing:

– Out of work
– Too little work left and anticipated being out of work soon
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Minimize Frequency of Interactions

• There is a relatively high startup cost associated with each 
interaction on many architectures

• Restructure the algorithm such that shared data are accessed 
and used in large pieces
– Amortize the startup cost over large accesses (not the volume)

• Increase the spatial locality of data access
– Ensure the proximity of consecutively accessed data locations
– On a shared-address-space architecture:
        a word => an entire cache line => fewer cache lines
– On a message-passing system:
        fewer messages => larger messages

• Example: sparse matrix-vector multiplication
– Collect all the nonlocal entries of the input vector that it requires
– Then perform an interaction-free multiplication
      (not trying to access a nonlocal element of the input vector when 

required)



High Performance Computing 69

Minimizing Contention and Hot Spots

• Contention occurs when multiple tasks try to access the 
same resources concurrently (interaction pattern)
– Multiple simultaneous transmissions of data over the same link
– Multiple simultaneous accesses to the same memory block
– Multiple processes sending messages to the same process

• Only one of the multiple operations can proceed at a time 
(critical section & mutual exclusion)
– Others are queued and proceed sequentially

• Example: matrix multiplication (2-D distribution)

– All tasks that work on the same row (column) of C will accessing the 
same block of A (B)

– The need to concurrently access these blocks of matrices A and B 
will create contention on both NUMA shared-address-space and 
message-passing parallel architectures
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Minimizing Contention and Hot Sports (cont’d)

• Eliminate contention in matrix multiplication
– Modify the order in which the block multiplications are performed

– All the tasks P*,j that work on the same row of C will be accessing 
block                      , which is different for each task  

– All the tasks Pi,* that work on the same column of C will be 
accessing block                    , which is also different for each task

• Centralized schemes for dynamic mapping are a frequent 
source of contention     =>   distributed mapping schemes
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Overlapping Computations with Interactions

• When wait for shared data => do some useful computations
• Techniques:

– Initiate an interaction early enough to complete before it is needed
• Identify irrelevant computations
• Restructure programs to initiate the interaction at an earlier point
• Possible if

– The interaction pattern is spatially and temporally static
– Multiple tasks are ready for execution

• Reducing the granularity of tasks  => increase overheads
– In dynamic mapping schemes, the process can anticipate that it is going 

to run out of work and initiate a work transfer interaction in advance
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Overlapping Computations with Interactions 
(cont’d)

• Overlapping computations with interaction requires support 
from the programming paradigm, the operating system, and 
the hardware
– Disjoint address-space paradigm:

• Non-blocking message passing primitives
• Functions for sending and receiving messages return control to 

the program before they have actually completed
• Hardware permits computation to proceed concurrently with 

message transfers
– Share-address-space paradigm:

• Prefetching hardware: anticipate the memory addresses and 
initiate the access in advance of when they are needed

• Compilers can detect the access pattern and place pseudo-
references to certain key memory locations
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Replicating Data or Computations

• Multiple processes may require frequent read-only access to 
shared data structure, such as a hash-table

• After replicating a copy of the shared data on each process, 
all subsequent accesses are free of interaction overhead

• For different paradigms:
– Shared-address-space:  cache
– Message-passing:

• Remote data accesses are more expensive or harder than local 
accesses

– Replication reduces interaction overhead and significantly simplifies 
the writing of the parallel program
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Replicating Data or Computations (cont’d)

• Cost:  data replication increases the memory requirements
– Linearly with the number of concurrent processes
– Limit the size of the problem that can be solved 
    =>   only replicate small mount of data

• To share intermediate results
– In some situations, it may be more cost-effective to compute these 

intermediate results than to get them from another process
• Interaction overhead can be traded for replicated computation
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Using Optimized Collective Interaction Operations

• Collective operations: such as 
– Broadcasting some data to all processes 
– Adding up numbers, each belonging to a different process

• Categories:
– Used by the tasks to access data
– Used to perform some communication-intensive computations
– Used for synchronization

• Collective operations are highly optimized to minimize the 
overheads due to data transfer as well as contention
– Available in library form from the vendors (MPI)
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Overlapping Interactions with Other Interactions

• Overlapping interactions between multiple pairs of processes 
can reduce the effective volume if communication

• Pipeline fashion (using naive broadcast algorithm) can 
increase the amount of overlap
– Unlikely to be included in a collective communication library (Expensive 

for a single broadcast operation)
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Parallel Algorithm Models
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Parallel Algorithm Models

• The way of structuring a parallel algorithm by
– Selecting a decomposition
– Selecting a mapping technique
– Applying the appropriate strategy to minimize interactions
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The Data-Parallel Model

• The tasks are statically or semi-statically mapped onto 
processes and each task performs similar operations on 
different data
– Data parallelism: a result of identical  operations on different data items
– Similar computations => uniform partitioning => load balance

• Programming paradigms:
– Message-passing: a better handle on locality
– Shared-address-space: ease the programming effort

• Minimize interaction overheads:
– Choose a locality preserving decomposition
– Overlap computation and interaction
– Use optimized collective interaction routines

• The degree of data parallelism increases with the size of the 
problem  => more processes to solve larger problem

• Example: matrix multiplication
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The Task Graph Model

• The interrelationships among the tasks are utilized to 
promote locality or to reduce interaction costs
– Task-dependency graph is explicitly used in mapping for task 

parallelism
• Solved problems: tasks with large data

– Tasks are mapped statically to help optimize the cost of data 
movement among tasks

• Interaction-reducing techniques:
– Reduce the volume and frequency of interaction by promoting 

locality
– Asynchronous interaction methods for overlapping

• Example: quicksort, sparse matrix factorization, many 
algorithms using divide-and-conquer decomposition
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The Work Pool Model

• Characterized by a dynamic mapping of task onto processes for 
load balancing
– No desired premapping
– Centralized or decentralized
– Work (task) pool: shared list, priority queue, hash table, or tree
– If the work is generated dynamically and a decentralized mapping is 

used   =>  termination detection
• In message-passing paradigm: this model is used when the 

amount of data is relative small (compared to computation)
– Tasks can move around without much interaction overhead
– The granularity of tasks: tradeoff between load-imbalance and the 

overhead for adding and extracting tasks
• Example: parallelization of loops by chunk scheduling
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The Master-Slave Model

• One or more master processes generate work and allocate it 
to worker processes
– Static: if the manager can estimate the size of the tasks
– Dynamic: for load balancing

• When time-consuming for the master to generate work
• Synchronization: each phase must finish before work in the 

next phases can be generated
• Hierarchical or multi-level manager-worker model

– Workers can further subdivide the tasks
• The granularity of tasks

– Bottleneck: too small
– Criteria: the cost of doing work dominates the cost of transferring 

work and cost of synchronization
• Asynchronous interaction: overlapping



High Performance Computing 83

The Pipeline or Producer-Consumer Model

• A stream of data is passed on through a succession of 
processes, each of which performs some tasks

• Stream parallelism: simultaneous execution of different 
programs on a data stream

• A pipeline is a chain of producers and consumers
– A linear chain
– A directed graph

• Task granularity:
– Too large: longer time to fill up the pipeline
– Too fine: more interaction overheads

• Interaction reduction technique: overlapping
• Example: LU factorization
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Hybrid Models

• More than one model may be applied
– Multiple models are applied hierarchically
– Multiple models are applied sequentially to different phases of a 

parallel algorithm
• Example: quicksort
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Analytical Modeling of Parallel Programs
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Performance Evaluation

• Evaluation in terms of execution time
– A sequential algorithm: a function of the size of its input
– A parallel algorithm:

• Input size
• The number of processing elements (PEs) used
• The relative computation and interprocess communication speeds

• A parallel system: the combination of 
– An algorithm
– The parallel architecture on which it is implemented

• Intuitive performance measures:
– Wall-clock time: taken to solve a given problem on a given parallel 

platform
• Cannot be extrapolated to other problem instances or larger machine 

configurations
– Quantify the benefit of parallelism: how much faster the parallel 

program runs with respect to the serial program
• A poorer serial algorithm might be more amenable to parallel 

processing?
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Sources of Overhead in Parallel Programs

• A typical execution includes:
– Essential computation 

• Computation that would be performed by the serial program for solving the same 
problem instance

– Interprocess communication
– Idling
– Excess computation

• Computation not performed by the serial formulation
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Sources of Overhead in Parallel Programs (cont’d)

• Interprocess interaction: processing elements (PEs) interact 
and communicate data (e.g., intermediate results)
– Usually the most significant source of parallel processing overhead

• Idling: processing elements become idle due to 
– Load imbalance

• Dynamic task generation: hard/impossible to predict the size of the 
subtasks 

– The problem cannot be subdivided statically to maintain 
uniform workload

• Some PEs are idle while others are working on the problem
– Synchronization 

• PEs might synchronize at certain points 
– PEs which are ready sooner will be idle until all the rest are 

ready
– Presence of serial components in a program

• Only one PE is allowed to work on it
• All the other PEs must wait
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Sources of Overhead in Parallel Programs (cont’d)

• Excess computation: the difference in computation performed 
by the parallel program and the best serial program
– The fastest known sequential algorithm may be difficult or impossible to 

parallelize
– A parallel algorithm is developed based on a poorer but easily 

parallelizable sequential algorithm
– A parallel algorithm based on the best serial algorithm may still perform 

more aggregate computation than the serial algorithm
• Example:  FFT (Fast Fourier Transform)

– In the serial version, the results of certain computations can be 
used

– In the parallel version, they are not reusable (generated by 
different PEs)

• Be performed multiple times on different PEs 
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Performance Metrics for Parallel Systems

• Performance metrics are useful for: 
– Determining the best algorithm
– Evaluating hardware platforms
– Examining the benefits from parallelism

• Execution time
– The serial runtime of a program (TS): the time elapsed between the 

beginning and the end of its execution on a sequential computer
– The parallel runtime (TP): the time that elapses from the moment a 

parallel computation starts to the moment the last PE finishes execution
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Performance Metrics for Parallel Systems (cont’d)

• Overhead function: the overheads incurred by a parallel 
program are encapsulated into a single expression 

• Total overhead (To): the total time collectively spent by all the 
PEs over and above that required by the fastest known 
sequential algorithm for solving the same problem on a single 
PE
– The total time summed over all PE is  pTP
– Overhead  To = pTP – TS

• Speedup (S): the ratio of the time taken to solve a problem on 
a single PE to the time required to solve the same problem on 
a parallel computer with p identical PEs
– Capture the relative benefit of solving a problem in parallel
– The p PEs are identical the one used by the sequential algorithm
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Computing Speedups of Parallel Programs

• For a given problem, more than one sequential algorithm 
may be available
– Natural to use the one that solves the problem in the least amount of 

time
– The asymptotically fastest sequential algorithm is unknown or its 

runtime has a large constant that makes it impractical to implement
• Take the fastest known algorithm

• Example: parallelizing bubble sort (105 records)
– The serial bubble sort: 150 seconds
– The serial quick sort: 30 seconds
– A parallel version of bubble sort (odd-even sort): 40 seconds
– Speedup

• Using serial bubble sort: 150/40 = 3.75
• Using serial quick sort: 30/40 = 0.75
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Computing Speedups of Parallel Programs (cont’d)

• Theoretically, speedup can never exceed the number of PE, p
• To achieve speedup p:

– None of the PEs spends more than TS/p
• A speedup greater than p:

– Only if each PE spends less than time TS/p
• A single PE could emulate the p PEs and solve the problem in 

fewer than TS units of time
– Contradiction: speedup is computed with respect to the best 

sequential algorithm
– Superlinear speedup

• The work performed by a serial algorithm is greater than its 
parallel formulation

• Hardware features that put the serial implementation at a 
disadvantage

• Example: the data might be too large for the cache of a single PE
– Degrading performance due to the use of slower memory elements
– Partitioned data can be small enough to fit into respective PE’s 

caches
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Amdahl’s Law
• The overall performance improvement gained by optimizing a 

single part of a system is limited by the fraction of time that 
the improved part is actually used

• The theoretical speedup is always limited by the part of the 
task that cannot benefit from the improvement
– Excess computation and communication are captured in the serial 

component
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Efficiency

• Only an ideal parallel system containing p PEs can deliver a 
speedup equal to p
– In practice, not achievable 

• PEs cannot devote 100% of their time to the computations of the algorithm

• Efficiency: a measure of the fraction of time for which a PE is 
usefully employed
– The ratio of speedup to the number of PEs    E = S / p
– In practice, speedup is less than p and efficiency is between 0 – 1

• Example: adding n numbers on n PEs
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Cost

• Cost (work or processor-time product) : the product of 
parallel runtime and the number of processing elements 
used
– Reflect the sum of the time that each PE spends solving the 

problem
• Efficiency: the ratio of the execution time of the fastest 

known sequential algorithm for solving a problem to the 
cost of solving the same problem on p PEs
– The cost of solving a problem on a single PE è time of the fastest 

known sequential algorithm
• Cost-optimal: the cost on a parallel computer has the same 

asymptotic growth as a function of the input size as the 
fastest-known sequential algorithm on a PE
– For such systems, the efficiency should be   (1)

• Known as pTP-optimal systems
– Example: adding n numbers on n PEs

• Total cost (processor-time product):   (nlogn)
• Serial time:   (n)
• Not cost-optimal

θ

θ

θ
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Variation of Efficiency

• Two observations
– For a given problem size, as we increase p, the overall efficiency goes down

• Common to all parallel systems
– Keeping p constant, the efficiency increases if the problem size is increased

• To keep the efficiency fixed: the problem size increases at a rate with 
respect to p

– A lower rate is more desirable (in problem size)


