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EPIC: Integrating Superscalar and VLIW

Processing instructions in parallel requires three major tasks:

1. Checking dependencies between instructions to determine which
instructions can be grouped together for parallel execution

2. Assigning instructions to the functional units on the hardware

3. Determining when instructions are initiated placed together into a
single word (bundle)
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Comparison
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Symmetric multiprocessing (SMP)

« A multiprocessor computer hardware and software architecture

— Two or more identical processors are connected to a single,
shared main memory, have full access to all input and output devices

— Controlled by a single operating system instance that treats all
processors equally, reserving none for special purposes

 Most multiprocessor systems today use an SMP architecture

— In the case of multi-core processors, the SMP architecture applies to the
cores, treating them as separate processors

Main
memory
- System bus I
Cache \ Cache | Cache | 1I/0 \




Current Trend: Computer Clusters

network
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Multithreading: Exploiting Thread-Level Parallelism

 ILP has the great advantage that it is reasonably transparent to
the programmer
— Quite limited or difficult to exploit in some applications
— When the processor is stalled waiting on a cache miss, the utilization of
the functional units drops dramatically
« Multithreading allows multiple threads to share the functional
units of a single processor in an overlapping fashion

— Multi-threading shares most of the processor core among a set of
threads, duplicating only private state, such as the registers and
program counter

— Duplicating the per-thread state of a processor core means creating a
separate register file, a separate PC, and a separate page table for
each thread

— A thread switch should be much more efficient than a process switch
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Multithreading
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Hardware Approaches to Multithreading

* Fine-grained multithreading
— Switches between threads on each clock

« Causing the execution of instructions from multiple threads to be
interleaved
— Hide the throughput losses that arise from both short and long stalls
 Instructions from other threads can be executed when one thread
stalls, even if the stall is only for a few cycles.
— The primary disadvantage
* Slows down the execution of an individual thread, since a thread

that 1s ready to execute without stalls will be delayed by
instructions from other threads

— Sample implementation: Sun Niagara processor
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Hardware Approaches to Multithreading

« Coarse-grained multithreading

— Switches threads only on costly stalls, such as level two or three cache
misses

* High start-up overhead

— Limited in its ability to overcome throughput losses, especially from
shorter stalls

« Simultaneous multithreading (SMT)
— A variation on fine-grained multithreading
— Based on a multiple-issue, dynamically scheduled processor

— Register renaming and dynamic scheduling allow multiple instructions
from independent threads to be executed without regard to the
dependences among them

* The resolution of the dependences can be handled by the dynamic
scheduling capability
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CPU and GPU Architectures
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Multithreading

A superscalar with no multithreading support
* A superscalar with coarse-grained multithreading
« A superscalar with fine-grained multithreading

* A superscalar with simultaneous multithreading
Execution slots ——»

Superscalar Coarse MT Fine MT SMT

<4—— Time
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Two Threads Scheduled in Time Slice Fashion
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Tolerate Latency via Hardware Threads

« A large number of threads interleave execution to keep the
device busy, whereas each individual thread takes longer to
execute than the theoretical minimum
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Data Parallelism: Vector Processors

 Provides high-level operations that work on vectors
— Vector is a linear array of numbers

e Type of number can vary, but usually 64 bit floating point (IEEE
754, 2°s complement)

» Length of the array also varies depending on hardware
— Example vectors would be 64 or 128 elements in length
— Small vectors (e.g. MMX/SSE) are about 4 elements in length
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SIMD and Vector Processing

« SIMD and its generalization in vector parallelism approach
improved efficiency by:
— The same operation be performed on multiple data elements
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Parallelism Manners
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