EPIC: Explicit Parallelism

Original Source Better Parallel machine Code
Code

—— Compile —»g % ? g

Hardware g pleNfunctionaliiinits

i (111
EPIC Compil E

Views Wider
Scope Get more efficient use
of execution resources

High Performance Computing 1

EPIC: Integrating Superscalar and VLIW

Processing instructions in parallel requires three major tasks:

1. Checking dependencies between instructions to determine which
instructions can be grouped together for parallel execution

2. Assigning instructions to the functional units on the hardware

3. Determining when instructions are initiated placed together into a
single word (bundle)

Grouping | Fn unit asgn | Initiation

Superscalar | Hardware Hardware Hardware

EPIC Compiler Hardware Hardware

Dynamic Compiler Compiler Hardware
VLIW

VLIW Compiler Compiler Compiler

High Performance Computing 2

Comparison

CISC RISC Superscalar VLIW
Instruction : : : . : : fixed size (but
e variable size | fixed size fixed size large)
Instruction variable : . :
format format fixed format fixed format fixed format
few, some GP and rename | many, many
Registers special many GP (RUU) GP
Memory embedded in
relerence many instr's load/store load/store load/store
decode data hardware code
Key Issues complexit forwarding, dependency scheduling,
y hazards resolution (compiler)
Instruction w [0 [£x] M[w] w [0 [£x] vl w | [Ex] mws|
flow —r w [[Ex| M) SR
w [0 [Ex] mws| T [e =S
fF 1o [Ex] mws| w |0 |ex] mvE] EX] MW

High Performance Computing 3

Multi-core Processor Gala

Cell Broadband Engine Processor

High Performance Computing 4

Floorplan of Core i7 Die

-
—
e
—-
=
——

—
p—
-

e
—— -
- - -

—
-
- —
—
-

—— - -
-
- -

J—
-

M M
i i
S s
pe Core Core Core Core pe
/0 MGQ /0

e u

m e

o u

re

y
8 Shared L3 S, \“\-8
| cache - I

- .- -

Qut-of-
order
scheduling
&
instruction
commit

Execution
units

Instruction
decode,
register
renaming,
&
microcode

Memory L1
ordering & | data
execution cache

L1 inst
cache

& inst

fetch

pre-

Branch

diction

L2 cache
Virtual | &

memory| interrupt
servicing

High Performance Computing 5

Symmetric multiprocessing (SMP)

« A multiprocessor computer hardware and software architecture

— Two or more identical processors are connected to a single,
shared main memory, have full access to all input and output devices

— Controlled by a single operating system instance that treats all
processors equally, reserving none for special purposes

 Most multiprocessor systems today use an SMP architecture

— In the case of multi-core processors, the SMP architecture applies to the
cores, treating them as separate processors

Main
memory
- System bus I
Cache \ Cache | Cache | 1I/0 \

Current Trend: Computer Clusters

network

High Performance Computing 7

Multithreading: Exploiting Thread-Level Parallelism

 ILP has the great advantage that it is reasonably transparent to
the programmer
— Quite limited or difficult to exploit in some applications
— When the processor is stalled waiting on a cache miss, the utilization of
the functional units drops dramatically
« Multithreading allows multiple threads to share the functional
units of a single processor in an overlapping fashion

— Multi-threading shares most of the processor core among a set of
threads, duplicating only private state, such as the registers and
program counter

— Duplicating the per-thread state of a processor core means creating a
separate register file, a separate PC, and a separate page table for
each thread

— A thread switch should be much more efficient than a process switch

High Performance Computing 8

Multithreading

Instruction
stream A

Instruction |
stream B
add a, b, c
muld, b, e
mulf, a, e
adda, d, g
fmul h, a, f

fadd 3, b, ¢
fmuld, a, e |
mul £, d,
adda, b, d

fmul f, a1

Instruction

Fetch

Instruction
Decode

, Instruction dependencies A

| adda,b,c muld,b,e

v o

mulM,d.g

fmulh, a, f

v

mulf, d,
mulf, a, e

adda, b, c

Integer
ALU

Y

adda,d, g

Integer
ALU

muld, b, e

fmulf a f
fmul h, a, f
fmuld, a, e

fadd a, b, ¢

Floating point
ALU

v

Write
reordering

Schedule

Instruction dependenciéé B

adda, b, d

fmul f, a, f

High Performance Computing 9

Hardware Approaches to Multithreading

* Fine-grained multithreading
— Switches between threads on each clock

« Causing the execution of instructions from multiple threads to be
interleaved
— Hide the throughput losses that arise from both short and long stalls
 Instructions from other threads can be executed when one thread
stalls, even if the stall is only for a few cycles.
— The primary disadvantage
* Slows down the execution of an individual thread, since a thread

that 1s ready to execute without stalls will be delayed by
instructions from other threads

— Sample implementation: Sun Niagara processor

High Performance Computing 10

Hardware Approaches to Multithreading

« Coarse-grained multithreading

— Switches threads only on costly stalls, such as level two or three cache
misses

* High start-up overhead

— Limited in its ability to overcome throughput losses, especially from
shorter stalls

« Simultaneous multithreading (SMT)
— A variation on fine-grained multithreading
— Based on a multiple-issue, dynamically scheduled processor

— Register renaming and dynamic scheduling allow multiple instructions
from independent threads to be executed without regard to the
dependences among them

* The resolution of the dependences can be handled by the dynamic
scheduling capability

High Performance Computing 11

CPU and GPU Architectures

& = = AMD Phenom™ || X6
EESRjEEESiEEER

popofosoniconn 6 cores

- T L—-—" 4-WaY SIMD
[Sapajsonnjcamn 1 register state set

Intel i7 6-core
6 cores
"] 4-wide SIMD
LELERER S 01111
EREE IIIIEIIIU 2 state sets
ORODJNSSEESEE0

H Sun UltraSPARC T2
E 8 cores
- 8 state sets per core
= No SIMD
%)
0 v !
SENNNSETISDNRSENNEEERSDRERE BN EE N IRE R EEEEN
mEEB ARNIEEERREERRDREE B FEPEGESGERERRREERAN
SEEs HENSERNNEEN NN EE 2111
L EEENEENINEE]
= ONIEERORRENINEEE o
[o BEORNEENIGER B8
a ENHEEDSSEMEE a
o ERHNNEEEESEBREEREE 2
q: GHODaBRNN0SE —
AMD Radeon™ HD6970
24 cores
1-248 (8-16 more usual) 64-wide state set per core
16-wide SIMD

nopoooesn o

AMD E-350 APU

2 CPU cores

2 GPU cores

14-wide state set per CPU core

1-248 (8-16 more usual) 32-wide state set per GPU core
2-wide SIMD per CPU core

8-wide SIMD per GPU core

High Performance Computing 12

Multithreading

A superscalar with no multithreading support
* A superscalar with coarse-grained multithreading
« A superscalar with fine-grained multithreading

* A superscalar with simultaneous multithreading
Execution slots ——»

Superscalar Coarse MT Fine MT SMT

<4—— Time

High Performance Computing 13

Two Threads Scheduled in Time Slice Fashion

Instruction
stream A

add a, b, c
muld, b, e
mulf, a, e
adda,d, g
fmulh, a, f

Instruction
stream B

Instruction
Fetch

-

-’
Y
\ 4

Instruction
Decode

i

0

Schedule

fmul h, a, f
adda, d, g
mul f, a, e

muld, b, e

add a, b, ¢

¥
|
oy

ALU

2

$

| »
g

Output

High Performance Computing 14

Tolerate Latency via Hardware Threads

« A large number of threads interleave execution to keep the
device busy, whereas each individual thread takes longer to
execute than the theoretical minimum

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

hread 6

Memory system

Active compute operation

High Performance Computing 15

Data Parallelism: Vector Processors

 Provides high-level operations that work on vectors
— Vector is a linear array of numbers

e Type of number can vary, but usually 64 bit floating point (IEEE
754, 2°s complement)

» Length of the array also varies depending on hardware
— Example vectors would be 64 or 128 elements in length
— Small vectors (e.g. MMX/SSE) are about 4 elements in length

SCALAR VECTOR
(1 operation) (N operations)

ol
?

add r3, rl, r2 add.vv v3, vl, v2

FP add/subtract '—>
FP multiply '—>
FP divide
I |]
nteger

I

puting 16

SIMD and Vector Processing

« SIMD and its generalization in vector parallelism approach
improved efficiency by:
— The same operation be performed on multiple data elements

Instruction
stream
Instruction

add.va, b, ¢ 3
dependencies

mulvd, b, e instruction
mul.vf a, e retch addva,b,c
addwva,d g
; i 7 # \ 4
fmulvh, a, f g mulvgd, b, e
Instruction 'FI‘JI‘V:T' Ak

addva,d, g

i

|

§ fmulv h, a, f
§

addva,d, g Schedule

fmulv h, a, f

Integer Integer Integer nteger Floating point Floating point Floating point Floating point
B B 5 E Sk El 2
ALU ALU ALU ALU ALU ALU ALU ALU

High Performance Computing 17

Parallelism Manners

Time

dLabdl gl

Instruction
Level
Parallelism

e e
>0 e e
oo ore

0) e
o9 e

Thread
Level
Parallelism

> e e e
> e e
> e e e
> @ e e

A A

Vector
Data
Parallelism

High Performance Computing 18

