
High Performance Computing 1

EPIC: Explicit Parallelism



High Performance Computing 2

EPIC: Integrating Superscalar and VLIW

Processing instructions in parallel requires three major tasks: 
1. Checking dependencies between instructions to determine which 

instructions can be grouped together for parallel execution
2. Assigning instructions to the functional units on the hardware
3. Determining when instructions are initiated placed together into a 

single word (bundle)



High Performance Computing 3

Comparison



High Performance Computing 4

Multi-core Processor Gala



High Performance Computing 5

Floorplan of Core i7 Die



High Performance Computing 6

Symmetric multiprocessing (SMP)

• A multiprocessor computer hardware and software architecture 
– Two or more identical processors are connected to a single, 

shared main memory, have full access to all input and output devices
– Controlled by a single operating system instance that treats all 

processors equally, reserving none for special purposes
• Most multiprocessor systems today use an SMP architecture

– In the case of multi-core processors, the SMP architecture applies to the 
cores, treating them as separate processors



High Performance Computing 7

Current Trend: Computer Clusters



High Performance Computing 8

Multithreading: Exploiting Thread-Level Parallelism

• ILP has the great advantage that it is reasonably transparent to 
the programmer
– Quite limited or difficult to exploit in some applications
– When the processor is stalled waiting on a cache miss, the utilization of 

the functional units drops dramatically
• Multithreading allows multiple threads to share the functional 

units of a single processor in an overlapping fashion
– Multi-threading shares most of the processor core among a set of 

threads, duplicating only private state, such as the registers and 
program counter

– Duplicating the per-thread state of a processor core means creating a 
separate register file, a separate PC, and a separate page table for 
each thread

– A thread switch should be much more efficient than a process switch



High Performance Computing 9

Multithreading



High Performance Computing 10

Hardware Approaches to Multithreading

• Fine-grained multithreading 
– Switches between threads on each clock

• Causing the execution of instructions from multiple threads to be 
interleaved

– Hide the throughput losses that arise from both short and long stalls
• Instructions from other threads can be executed when one thread 

stalls, even if the stall is only for a few cycles.
– The primary disadvantage

• Slows down the execution of an individual thread, since a thread 
that is ready to execute without stalls will be delayed by 
instructions from other threads

– Sample implementation: Sun Niagara processor



High Performance Computing 11

Hardware Approaches to Multithreading

• Coarse-grained multithreading
– Switches threads only on costly stalls, such as level two or three cache 

misses
• High start-up overhead

– Limited in its ability to overcome throughput losses, especially from 
shorter stalls

• Simultaneous multithreading (SMT)
– A variation on fine-grained multithreading
– Based on a multiple-issue, dynamically scheduled processor
– Register renaming and dynamic scheduling allow multiple instructions 

from independent threads to be executed without regard to the 
dependences among them

• The resolution of the dependences can be handled by the dynamic 
scheduling capability



High Performance Computing 12

CPU and GPU Architectures



High Performance Computing 13

Multithreading

• A superscalar with no multithreading support 
• A superscalar with coarse-grained multithreading 
• A superscalar with fine-grained multithreading 
• A superscalar with simultaneous multithreading



High Performance Computing 14

Two Threads Scheduled in Time Slice Fashion



High Performance Computing 15

Tolerate Latency via Hardware Threads

• A large number of threads interleave execution to keep the 
device busy, whereas each individual thread takes longer to 
execute than the theoretical minimum



High Performance Computing 16

Data Parallelism: Vector Processors

• Provides high-level operations that work on vectors
– Vector is a linear array of numbers

• Type of number can vary, but usually 64 bit floating point (IEEE 
754, 2’s complement)

• Length of the array also varies depending on hardware
– Example vectors would be 64 or 128 elements in length
– Small vectors (e.g. MMX/SSE) are about 4 elements in length



High Performance Computing 17

SIMD and Vector Processing

• SIMD and its generalization in vector parallelism approach 
improved efficiency by:
– The same operation be performed on multiple data elements



High Performance Computing 18

Parallelism Manners


